当前位置:初三网 >全国中考 > 初中数学 > 数学知识点 > 正文

2018年中考数学知识点:二次函数的三种表达式

2018-03-05 15:40:37 文/王蕊

初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容那么,下面,初三网小编为大家整理一下2018年中考数学知识点:二次函数的三种表达式希望能帮助到大家!

2018年中考数学知识点:二次函数的三种表达式

1二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

1二次函数顶点坐标公式推导

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k

[抛物线的顶点P(h,k)]

对于二次函数y=ax^2+bx+c

其顶点坐标为 (-b/2a,(4ac-b^2)/4a)

推导:

y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a

对称轴x=-b/2a

顶点坐标(-b/2a,(4ac-b^2)/4a)

1二次函数解析式

1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)²+k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=ax²

y=a(x-h)²

y=a(x-h)²+k

y=ax²+bx+c

顶点坐标

[0,0]

[h,0]

[h,k]

[-b/2a,(4ac-b²)/4a]

对称轴

x=0

x=h

x=h

x=-b/2a

2. 当h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,即可得

当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;

因此,研究抛物线y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

以上就是小编为大家整理的2018年中考数学知识点:二次函数的三种表达式,仅供大家参考,更多中考信息请继续关注本站!

查看更多数学知识点内容