考试中不能直接使用,会扣一些分,最好是证明一下。如果是已知是中线,又是高线,那就是垂直平分线,根据定理(垂直平分线上的点到角两边的距离相等),所以两边相等。

三线合一的逆定理的应用

如图,①AD⊥BC于D,②AD平分∠BAC,③AD是BC中线
(1)若以①②为条件,求证AB=AC。理由如下:
∵∠ADB=∠ADC=90°,∠BAD=∠CAD,AD=AD,
∴△ABD≌△ACD(ASA)
∴AB=AC
(2)若以②③为条件,求证AB=AC。理由如下:
∵AD是BC中线,
∴S△ABD=S△ACD,
作DE⊥AB于E,DF⊥AC于F,
又∵AD平分∠BAC,
∴DE=DF,
∴AB=AC(等底等高)
(3)若①③,求证AB=AC。理由如下:
∵BD=CD,∠ADB=∠ADC=90°,AD=AD,
∴△ABD≌△ACD,
∴AB=AC

1.如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。2.如果三角形中有一边的中线和这条边上的高重合,那么这个三角...

三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。要证明等腰三角形三线合一很简单,例如条件是等腰三角形和底边...

三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。例:已知等腰三角形的底边上的中线和高为一条,则可以说这条线...

三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合(前提一定是在等腰三角形中,其它三角形不适用)。同时,“三线...

三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。要证明等腰三角形三线合一很简单,可以先假设一个,然后去证明...

三线合一需要的条件是在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。(这个前提一定是在等腰三角形中,其它三角形不适用。...

三线合一可以证明这个三角形是等腰三角形。相关定理如下:1、如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。2、如...

证明这个三角形是等腰三角形。相关定理如下:如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。如果三角形中有一边的中...